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Iterative dual-space direct methods based on phase re®ne-

ment in reciprocal space and peak picking in real space are

able to locate relatively large numbers of anomalous scatterers

ef®ciently from MAD or SAD data. Truncation of the data at a

particular resolution, typically in the range 3.0±3.5 AÊ , can be

critical to success. The ef®ciency can be improved by roughly

an order of magnitude by Patterson-based seeding instead of

starting from random phases or sites; Patterson superposition

methods also provide useful validation. The program

SHELXD implementing this approach is available as part of

the SHELX package.
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1. Introduction

Recent advances in synchrotron technology, cryocrystallo-

graphy and the incorporation of selenomethionine into

proteins make the multiwavelength anomalous diffraction

(MAD) method (Hendrickson, 1991; Smith, 1998) an effective

approach to the solution of protein structures. Soaking with

bromides or iodides combined with MAD or single-

wavelength anomalous diffraction (SAD; Dauter et al., 1999,

2000; Dauter & Dauter, 1999) or even SAD applied to native

anomalous scatterers such as sulfur or phosphorus (Weiss et

al., 2001; Dauter & Adamiak, 2001) are potential alternatives.

These approaches can result in relatively large numbers (50 or

more) of heavy-atom sites, especially when large protein

complexes are investigated.

In principle, the MAD approach, in which data are collected

at two or more wavelengths for which the f 0 and f 00 anomalous

scattering factors are non-zero for at least one of the elements

present, determines experimental phases directly. There is

however a hidden phase problem: it is still necessary to ®nd the

positions of the anomalous scatterers in order to calculate the

reference phases. Without these heavy-atom reference phases

the protein phases cannot be found. Hand interpretation of

the Patterson function is hardly a viable option, but conven-

tional small-molecule direct methods (Wilson, 1978; Yao, 1981;

Mukherjee et al., 1989; Sheldrick, 1990) and automated

computer Patterson interpretation (Sheldrick et al., 1993;

Sheldrick, 1998; Terwilliger & Berendzen, 1999; Grosse-

Kunstleve & Brunger, 1999) are often successful in locating

the heavy-atom sites. An alternative direct-methods approach

to substructure solution has been described recently by de

Graaff et al. (2001). Although small-molecule direct methods

require data to atomic resolution (1.2 AÊ or better), direct

methods are still effective for the solution of heavy-atom

substructures because the distances between the heavy atoms

are usually appreciably greater than the resolution of the data

(typically about 3 AÊ ). Nevertheless, these methods do not



always succeed when there are a large number of sites.

Conventional direct methods tend to be upset by a few aber-

rant re¯ections which are common when working with weak

anomalous differences; probability formulas such as negative

quartets that depend on the weak E values cannot be used

because these E values are unreliable for difference structure

factors. Patterson interpretation methods can suffer from the

effect of accumulated coordinate errors and false assignments

if the atoms are found in a stepwise manner. In contrast, dual-

space direct methods (Miller et al., 1993; Weeks & Miller, 1999;

Sheldrick et al., 2001) appear to be robust and ef®cient for

large substructures. We describe here the implementation of

the dual-space strategy and the integration with Patterson

methods in the program SHELXD and analyze the factors

critical for the success of this approach.

2. Methods

2.1. Data-quality control

The main problem with SAD, SIR or MAD data is that they

are noisy because they are based on small differences between

observed structure factors; the best antidote is to collect highly

redundant data (Weiss et al., 2001; Dauter & Adamiak, 2001).

On the other hand, the resolution and completeness of the FA

data are less critical: 3.5 AÊ is adequate, since the anomalous

atoms are more than 3.5 AÊ apart, and the problem is still

highly over-determined. Although higher resolution and

completeness are not required to ®nd the anomalous scat-

terers, they do have a major in¯uence on the quality of the

resulting electron-density maps (Brodersen et al., 2000).

Before attempting to use MAD or SAD data to locate

anomalous scatterers, a critical decision to be made is to

decide which resolution the data should be truncated. If data

are used to a higher resolution than there is signi®cant

dispersive and anomalous information, the effect will be to

add noise. Since direct methods are based on normalized

structure factors, which emphasize the high-resolution data,

they are particularly sensitive to this. An effective test is to

calculate the correlation coef®cient between the signed

anomalous differences �F at different wavelengths as a

function of the resolution. To a ®rst-order approximation,

assuming that the anomalous differences are small compared

with the native structure factors, the anomalous differences at

different wavelengths should be related by a positive

proportionality constant given by the ratio of their f 00 values.

The fact that correlation coef®cients between the anomalous

�F values at different wavelengths can be greater than 95%

for very high quality data indicates that the approximations

involved are acceptably small. The high-energy remote

wavelength is usually the best choice as a reference for

calculating the correlation coef®cients, because it still contains

signi®cant anomalous signal and is insensitive to wavelength

drift. A good general rule is to truncate the data where this

correlation coef®cient falls below about 25±30%. This proce-

dure can also indicate if there is a major problem with the data

set. For SAD data collected at a single wavelength, it is still

possible to use the correlation coef®cient between the

anomalous differences collected from two crystals, or from

one crystal in two orientations, before merging the two data

sets. If only one set of anomalous data is available, the

correlation coef®cient cannot be calculated, but it is still

possible to calculate the ratio of �F to its estimated standard

deviation as a function of the resolution. It is recommended

that the data are not merged when they are scaled, so that the

agreement of the equivalent re¯ections provides additional

statistical information. Provided that it has been possible to

propagate good estimates of standard deviations through each

stage of the data processing, the data can be truncated at the

resolution at which this ratio drops to below about 1.3. If even

this information is not reliably available, then a useful rule of

thumb is to truncate the data to about 0.5 AÊ less than the

diffraction limit of the crystal employed for data collection.

The program XPREP (Bruker Nonius, 2001) was used for all

the preliminary data processing and statistics in this work;

XPREP employs local scaling (Matthews & Czerwinski, 1975)

and uses essentially the same approximations in deriving

MAD FA values as described by Terwilliger (1994).

2.2. Dual-space recycling

The dual-space recycling approach (also known as Shake-

and-Bake) was implemented in the computer programs SnB

(Miller et al., 1994) and more recently in SHELXD. It has

been reviewed recently in detail (UsoÂ n & Sheldrick, 1999;

Sheldrick et al., 2001) and the optimization of the SnB

program for substructures has been described by Howell et al.

(2000). The Shake-and-Bake algorithm is of necessity based on

the strongest normalized difference structure factors E, typi-

cally corresponding to the largest �15% of the observed

difference structure factors �F (SIR or SAD) or FA (MAD or

SIRAS) in each resolution shell, because the probability

formulas only provide signi®cant phase information for the

strongest E values. For SIR or SAD phasing, the smaller E

values are in any case unreliable because they represent lower

limits on the normalized heavy-atom structure factors. The use

of only a fraction of the total number of re¯ections is also a

main reason for the speed and ef®ciency of dual-space re-

cycling.

The dual-space approach alternates between real and reci-

procal space. In reciprocal space, phases are re®ned in SnB by

reducing the minimal function (Miller et al., 1993) or expanded

in SHELXD from the �40% most reliable using the tangent

formula (Karle & Hauptman, 1956; Karle, 1968). Both these

techniques appear to be good ways of propagating phase

information throughout reciprocal space; however, both

would, if used exclusively, lead to phase divergence away from

a chemically sensible (e.g. equal-atom) arrangement of sites.

This is why the alternate real-space cycles are required to

impose the strong constraint that we expect to ®nd N sites with

approximately equal scattering power. The real/reciprocal-

space combination appears to be a particularly effective

searching algorithm. Peak-picking can be regarded as an

extreme (and computationally ef®cient) form of density
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modi®cation and enables a minimum distance criterion to be

applied to eliminate unreasonably close heavy atoms. Simi-

larly, it is usually desirable (and is the default option in

SHELXD) to ignore peaks on special positions, although it is

not unknown for heavy-atom derivatives produced by soaking

to have sites on special positions. Ghost peaks on special

positions are often characteristic of false solutions in small-

molecule direct methods. The number of unique substructure

sites N is assumed to be known approximately and the selec-

tion of N peaks probably provides a useful constraint on the

structure solution. The dual-space recycling is typically

performed for several hundred or more sets of N random

starting atoms, with typically 2N cycles for each. The appli-

cation of dual-space recycling to substructures is summarized

in Fig. 1.

In the course of testing SHELXD for ab initio solution of

structures from native data, it was discovered by accident that

a very effective procedure is to leave out about 30% of the

peaks at random when calculating phases for the next cycle. In

retrospect, it is possible to understand why this is an effective

search strategy by analogy with the omit maps (Hodel et al.,

1992) frequently used in macromolecular crystallography. If

the deleted atoms are part of an essentially correct solution,

they will probably be regenerated; if not, they will be replaced

by different, possibly better, potential atoms.

2.3. Starting atoms consistent with the Patterson function

The ef®ciency of the dual-space algorithm can be improved

appreciably by using starting atoms consistent with the

Patterson function rather than random starting atoms. Our

algorithm for generating starting atoms that are consistent

with the Patterson makes extensive use of a special form of the

Patterson minimum function (PMF) proposed by Nordman

(1966). Two atoms are placed in a unit cell and all their

symmetry equivalents generated. The Patterson function

values corresponding to all unique vectors involving these

atoms are sorted into ascending order and the PMF is then

calculated as the mean value of the lowest (say) 30% of the

values in this list. Since it is unlikely that this PMF will have a

high value for wrong atom positions, especially when the

symmetry is high and there are many vectors, it may be used as

a criterion for a translational search for a two-atom fragment.

Each strong general Patterson peak is in principle a suitable

two-atom `fragment' for this translational search, because it

may well correspond to a vector between two heavy atoms.

Since we are only interested in generating many different sets

of atom coordinates consistent with the Patterson function,

there is no need to determine the global maximum PMF;

indeed, often this does not give good starting atoms for the

dual-space recycling. A simple and effective approach is to try

a ®xed number (usually in the range 9999±99 999) of random

translations for a vector and retain the one with the highest

PMF. A random selection of vectors from the Patterson peak

list (excluding Harker peaks), biased so that the high peaks

are chosen more often, is an effective way to pick the two-

atom search fragment. For substructure solution we use an

unsharpened Patterson, though for locating heavy atoms from

native data without the use of the anomalous signal it may be

better to sharpen the Patterson.

Before the ®rst dual-space cycle, the two starting atoms

need to be extended to N atoms. A difference Fourier synth-

esis would be effective for a small number of heavy atoms, but

a better technique for a large number is to calculate a full-

symmetry Patterson superposition minimum function (PSMF;

Buerger, 1959). Firstly, all symmetry equivalents are generated

for the two starting atoms. Each pixel of the PSMF map is

assigned a value equal to the PMF for all vectors between

these atoms and a dummy atom placed at the pixel. Peaks are

then obtained by map interpolation and sorted in the usual

way.

By applying this procedure before each run through the

dual-space recycling, it is possible to generate an unlimited

number of different sets of starting atoms, all more or less

consistent with the Patterson function. Our tests have shown

that this combination of direct and Patterson methods

produces more complete and precise solutions than using

Patterson methods alone. It appears that iterative Patterson-

only procedures suffer from an accumulation of atomic co-

ordinate errors each time a new atom is added. Because it

includes phase re®nement, the dual-space approach does not

suffer from this degradation as the number of atoms increases.

2.4. Occupancy refinement

SHELXD provides the option of re®ning the occupancies

of the atoms after the peak-search in the ®nal dual-space

cycles. Although originally intended to handle the problem of

the fractional occupancies encountered in derivatives

obtained by soaking (especially halide soaks), as described

below it also helps to identify the number of anomalous

scatterers in the equal-atom case, e.g. when the number of

selenomethionine sites is less than expected because of

disorder or when unexpected anomalous scatterers are

present.
Figure 1
Flow diagram for dual-space recycling substructure solution.



2.5. Validation of the solutions

In SHELXD, potential solutions are identi®ed by high

values of the correlation coef®cient CC between Eo and Ec

(Fujinaga & Read, 1987),
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For ab initio applications, these potential solutions can be

improved and extended by means of peak-list optimization

(Sheldrick & Gould, 1995), which ®nds the set of potential

sites that maximizes CC for all re¯ections. This is not used for

substructures because of the unreliable weak E values.

Nevertheless, the CC values calculated both with all E values

and with only the E values not used directly for substructure

solution (analogous to the use of the free R factor; BruÈ nger,

1992) provide good indications as to whether the substructure

sites are correct. The weights w can be used to weight down

the less reliable �F estimates; in SHELXD w is set to

[1 + g�2(E)]ÿ1, with a default value of 0.1 for g.

The Patterson superposition function is also the basis of the

crossword table (Sheldrick et al., 1993; Sheldrick, 1998)

introduced in SHELXS86, which provides a convenient way to

assess which of the heavy-atom sites are correct and also in

some cases to recognize the presence of non-crystallographic

symmetry. In this table, the rows and columns correspond to

the potential atoms. For each pair of atoms the top number is

the minimum distance between them, taking the space-group

symmetry into account, and the bottom number is the PMF

calculated from all vectors between the two atoms, also taking

symmetry into account. The ®rst vertical column is based on

the self-vectors, i.e. between one atom and its symmetry

equivalents. In general, wrong sites can be recognized in this

table by the presence of several zero PMF values (negative

values are replaced by zero). The mean PMF value for a

speci®ed number of atoms provides a ®gure of merit PATFOM

that can be useful for selecting the best solution, although the

absolute value depends on the structure in question and tends

to be smaller for larger structures.

3. Results

The approach described above has been tested on MAD (and

SAD) data for a set of known substructures, some of which

were originally solved with SHELXD and some with other

programs. The overall results are summarized in Table 1. With

two exceptions, the top N peaks corresponded to the N correct

known sites and had peak heights that were signi®cantly

higher than the highest noise peaks. The smaller structures

required a few seconds per solution and, except for the 160-

site SAD problem, all gave an appreciable number of solu-

tions per hour on a 1 GHz PC using default settings for all

parameters. In all cases, the correlation coef®cients decisively

identi®ed the correct solutions. This was also in general true of

the PATFOM values (not shown), but since the actual values

obtained depend on the size of the substructure and on the

complexity of the space group, PATFOM does not provide a

good indication of whether a substructure has been solved or

not. In our experience with substructure solution, when a

group of correlation coef®cients are well clear of the rest and

have values greater than 35% they always correspond to

correct solutions; for ab initio solution of complete structures

at atomic resolution the corresponding threshold is about

65%. In the case of SAD, correct substructure solutions have

been found with correlation coef®cients of less than 25%. The

minimal function (Miller et al., 1993), the tangent-formula

residual R� (Sheldrick, 1990) and the conventional R factor

were also successful at identifying the correct solutions for a

given structure, but not quite as useful as the correlation

coef®cient as absolute ®gures of merit.
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Figure 2
Correlation coef®cients (calculated using XPREP) expressed as percen-
tages between the high-energy remote data and the two or three other
wavelengths collected in MAD experiments on ®ve different proteins. For
AEP (red) and ApD (green) the high values involving the peak (solid
line) and in¯ection-point (dotted line) data show that it is not necessary
to truncate the data; there is signi®cant MAD information up to the
highest resolution collected. A poorer correlation would be expected with
the low-energy remote data for ApD (dashed green line) which has a
much smaller anomalous signal. For RRF (blue) it would be advisable to
truncate the data to about 3.9 AÊ (which indeed led to a successful solution
using SHELXD) and for AT (gray) 3.5 AÊ is appropriate (see Fig. 3). Unk
(purple) is clearly hopeless and in fact could not be solved.

Figure 3
The effect of different resolution cutoffs on the success rate of SHELXD
in solving the AT substructure (Hensgens et al., 2002). The correlation
coef®cient between the signed |Fhkl|ÿ |Fhkl | differences of the high-energy
remote and peak-wavelength data (CCano) is shown in green. For each
resolution cutoff, SHELXD was run for 100 tries. The correlation
coef®cient between Eo and Ec for the best solution (CCmax) is shown in
blue and the number of solutions per 100 tries (#succ) as red boxes.
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With the exception of the structure in space group P1,

Patterson seeding appreciably increased the number of solu-

tions per hour, though this improvement varied widely with

the structure and also to some extent with the other parameter

settings. In fact, Patterson seeding as explained above cannot

work in the space group P1 because the PMF depends only on

a single vector that does not change if a translation search is

performed. To circumvent this problem in P1 an extra atom is

placed on the origin, so that the PMF depends on three

vectors, two of which change when the two-atom fragment is

translated. However, the reason for the lack of speed-up in the

P1 example (cyanase) probably lies in the very high success

rate per attempt of the dual-space algorithm in this space

group starting even from random atoms (Xu et al., 2000).

Table 2 shows the results obtained with the 66-site AEP

problem when the data, originally collected as a three-

wavelength MAD experiment, are treated in different ways:

two- or three-wavelength MAD, pure anomalous differences,

pure dispersive differences or pseudo-SIRAS. With the

exception of the pure peak minus high-energy remote

dispersive differences, all lead to a satisfactory number of

correct solutions per 1000 tries. The wavelength used for the

peak data collection was known to be unreliable and our

failure to solve the structure with the pure dispersive differ-

ences between peak and high-energy remote suggests that

these are smaller or less accurate than expected. In general, it

requires very high wavelength stability to obtain accurate

peak data in a MAD experiment; the white line (which may

have been enhanced by oxidation of some of the Se atoms;

Sharff et al., 2000) can be very sharp. In the AEP example, the

best results are obtained by two-wavelength (in¯ection-point

and high-energy remote) MAD or pseudo-SIRAS treatment;

the difference is that in the pseudo-SIRAS analysis only one

wavelength (the in¯ection point) contributes to the anomalous

differences, whereas in the MAD analysis both wavelengths

contribute. The results show a good correlation between the

number of correct solutions per 1000 attempts, the correlation

coef®cients and the differences in peak height between correct

sites and noise peaks. The latter show some memory effects

from the use of the random omit procedure, although this is

not applied to the ®nal dual-space cycle; the separation

between the weakest correct site and the highest noise peak is

greater when the random omit is switched off, but then the

frequency of correct solutions decreases because the searching

is less effective. In this example, the success rate when

Patterson seeding is used is already so high that the random

omit procedure results in only a minor improvement; however,

when the Patterson seeding is not used the random omit

procedure improved the success rate by a factor of nearly six.

In the above example, the anomalous and dispersive signals

are relatively strong and it was possible to use the full reso-

lution range in all the tests. When these signals are weak, the

choice of the resolution at which to truncate the data can be

critical. Fig. 2 shows the utility of the correlation coef®cient

between signed |Fhkl| ÿ |Fhkl | differences in deciding where to

truncate. The effects of different resolution thresholds on the

success of the substructure solution are illustrated in Fig. 3. In

the case of AT (Hensgens et al., 2002), SHELXD did not ®nd

any solutions when any data to higher resolution than 3.5 AÊ

were included. For different cutoffs between 3.5 and 4.5 AÊ , the

quality of the best solution as measured by the highest

correlation coef®cient achieved (CCmax) in a run of 100 tries is

very similar. However, the success rate shows a strong varia-

tion with the resolution cutoff, which probably arises from a

resolution dependence of the data quality (possibly caused by

different levels of diffuse X-ray scatter).

Since the correlation coef®cient (CC) and PATFOM ®gures

of merit are physically independent, they can be used to

produce a two-dimensional scatter plot that sometimes shows

clusters of solutions both for the correct solution and for

Table 2
Tests of different ways of treating the experimental data using the 66-site
AEP structure (Chen et al., 2000) showing the higher success rate when
Patterson seeding is used.

HR, high-energy remote, PK, peak; IP, in¯ection point. The �F or FA values
were calculated using XPREP. In each case, 1000 attempts were made. The
correlation coef®cients were calculated using all data and also using only the
weak re¯ections, i.e. those not used directly in the dual-space recycling
(E < 1.5). The peak heights from the ®nal dual-space cycle have been
normalized so that the highest peak has a height of 1.0. CCweak is the
correlation coef®cient between Eo and Ec calculated using only those
re¯ections not used to locate the heavy atoms.

Source of �F

Solutions
(with
Patterson)

Solutions
(without)

Best
CC
(%)

Best
CCweak

(%)

Height
of peak
66

Height
of peak
67

IP/HR (MAD) 697 175 62.9 52.7 0.559 0.282
IP/HR (MAD)² 655 30 62.9 52.7 0.563 0.176
IP/HR (SIRAS) 652 137 62.1 52.2 0.512 0.273
IP/PK/HR (MAD) 564 61 60.9 51.4 0.517 0.302
IP (SAD) 424 150 54.1 31.2 0.342 0.195
PK (SAD) 380 93 51.9 30.0 0.484 0.222
HR (SAD) 148 25 47.2 27.3 0.547 0.291
IP/HR (energy-

dispersive only)
127 68 43.6 27.1 0.346 0.332

PK/HR (energy-
dispersive only)

0 0 9.9 2.0 0.350 0.347

² In this row only, the random omit option was switched off.

Table 1
Some applications of integrated Patterson/direct methods to the location
of the anomalous scatterers from MAD data.

Protein
No. of
sites²

Space
group

MW³
(kDa)

dmin§
(AÊ )

CC
(%)

P
ratio} Solns²² Ref.³³

ApD 3/3 Se C2221 16 2.2 45 16 512 i
RRF 3/4 Se P43212 20 4.0 60 1.4 566 ii
ModE 6/6 Se P21212 57 3.0 66 7.3 326 iii
9hem 18/18 Fe P21 64 2.9 73 4.0 480 iv
AT 32/32 Se C2 160 3.5 49 5.1 7 v
Cyanase 40/40 Se P1 170 2.4 57 1.0 132 vi
TH 51/60 Se P21 161 2.5 52 2.8 26 vii
AEP 66/66 Se P21 270 2.55 61 13 49 viii
KPHMT 145/160 Se P21 567 2.8 39 35 0.1 ix

² The ®rst number is the number found and the second is the total number that should be
present. ³ Molecular weight of the asymmetric unit. § The limiting resolution to
which the data were processed. } The P ratio is the speed-up obtained by using starting
atoms consistent with the Patterson function. ²² The number of solutions per hour on a
1 GHz Pentium PC. ³³ References: (i) Walsh et al. (1999), (ii) Selmer et al. (1999), (iii)
Hall et al. (1999), (iv) Mathias et al. (1999), (v) Hensgens et al. (2002), (vi) Walsh et al.
(2000), (vii) Buckley et al. (2000), (viii) Chen et al. (2000), (ix) von Delft (2001).



pseudo-solutions. An example is shown in Fig. 4. Correct

solutions and false solutions show a characteristic bimodal

distribution, in this case with one outlier; however, a bimodal

distribution is not a necessary condition for structure solution

because for straightforward problems it sometimes happens

that all solutions are correct.

The exact number of ordered anomalously scattering sites

in a given crystal is not always known. To test the robustness of

SHELXD when searching for an incorrect number of sites, the

program was run requesting different numbers of sites for the

AT substructure (Fig. 5). All scenarios, except when 20 sites

were requested without occupancy re®nement, gave complete

solutions of the substructure (for 20 sites, the program will

only output the highest 28 peaks). Without the occupancy

re®nement against all the substructure structure factors after

the ®nal dual-space cycle, a sharp drop in peak height is

observed right after the number of peaks requested. In this

case, it is not possible to deduce the correct number of sites.

However, with peak-height re®nement, the sharp drop occurs

between site number 32 and site number 33, independent of

the actual number of sites requested. In fact, if no drop in peak

height is observed (as here for the case of 20 requested sites),

this can be taken as an indication that the substructure consists

of more sites than expected. In such cases SHELXD should be

re-run with an increased number of sites requested.

For large and dif®cult substructure problems, the presence

of a potential site in most of the `correct' solutions can be an

indication that this site is correct; sites that only appear in a

few solutions are more likely to be noise peaks. This can be

exploited by selecting all the solutions that form the cluster

judged best in terms of CC, converting the phase sets to the

same origin and enantiomorph and combining them by

vectorial addition of the transformed normalized structure

factors. This might be expected to improve both the percen-

tage of correct sites and also their accuracy. Table 3 illustrates

the results of this procedure for the 160-site KPHMT problem.

Although the selenium sites would not be expected to agree

perfectly with the methionine sulfur positions in the native

structure, it is clear that reciprocal-space vector averaging of

the best 16 solutions has resulted in a small but signi®cant

improvement in the completeness and accuracy of the

substructure.

In addition to its use in verifying the overall solution and

the individual sites, the crossword table is also a valuable

source of information about non-crystallographic symmetry.

This provides a further indication as to which sites are correct

and enables rotation matrices and translation vectors to be

derived that can be used subsequently for density modi®cation

with NCS averaging (Bricogne, 1976; Cowtan & Zhang, 1999).

An example is illustrated in Fig. 6.

4. Conclusions

The procedure described in this paper is robust and suf®-

ciently fast so that it is unlikely to become the rate-

determining stage of structure determination, except possibly
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Table 3
Cumulative numbers of selenium sites from the SAD substructure
solution within the given distance from a methionine S atom in the native
structure for the 160-site KPHMT test (von Delft, 2001).

The numbers are given as N160/N200, where N160 is based on the top 160 peaks
and N200 on the top 200 peaks.

<0.5 AÊ <1.0 AÊ <1.5 AÊ <2.0 AÊ

Solution with the best CC 85/87 137/140 143/147 145/149
Best 16 solutions combined 97/97 140/143 149/154 152/157

Figure 4
Scatterplot of CC versus PATFOM scatter plot for structure TH (Buckley
et al., 2000) showing clusters of correct solutions and pseudo-solutions.

Figure 5
Peak height versus peak number of the best solution out of 100 attempts
to solve the substructure of AT using MAD FA values limited to 3.5 AÊ

resolution (a) without occupancy re®nement and (b) with occupancy
re®nement. For each curve, a different number of sites was requested.
The pink lines correspond to the correct number of sites (32).
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for very large substructures with weak anomalous signals. If

necessary, it can very simply and ef®ciently be `parallelized' by

running the program with different random number seeds on a

large number of processors at the same time. In the large

majority of applications, the only critical starting parameter is

the resolution at which to truncate the �F data, although if the

data-to-parameter ratio becomes too low (because the data

are incomplete or when it is necessary to truncate at rather low

resolution) it may be necessary to reduce the minimum E

value for the re¯ections used in the dual-space recycling

(usually set to 1.5). It is also of advantage if the number of

unique sites N is approximately known, as is normally the case

with selenomethionine MAD experiments; in unclear cases, it

might be a good idea to try different values for N. The

substructure determination appears to work almost as well

with single-wavelength (SAD) data as with multiple-

wavelength (MAD) data, although in some cases a two-

wavelength MAD experiment may give the best results. It is

possible that if a SAD data set were collected for the same

total time (i.e. higher redundancy) the results would be as

good as MAD and less accident-prone. On the other hand, it

should be remembered that a MAD (or SIRAS) experiment

will give more precise phases than SAD: the MAD data can be

analyzed to obtain the phase shift between the substructure

and the protein, whereas the SAD phase shifts are subject to a

twofold ambiguity and there are no SAD estimates for the

phases of re¯ections in centrosymmetric projections.

The robustness and ef®ciency of the dual-space approach

with Patterson seeding and its ability to solve larger

substructures make it an eminently suitable approach for high-

throughput structural genomics. Solving the substructure is of

course a necessary but not suf®cient requirement for solving

the complete structure!
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